Summary

LACS [1] provides the means for analyzing NMR data early on, prior to assignment or structure determination, to ascertain whether the 13C chemical shifts are referenced properly and to identify 13C$^\alpha$ and 13C$^\beta$ peaks with unusual chemical shifts. LACS takes advantage of the finding that, for a correctly referenced protein dataset, linear regression plots of $\Delta\delta^{13}$C$^\alpha_i$, $\Delta\delta^{13}$C$^\beta_i$, or $\Delta\delta^1$H$^\alpha_i$ vs. $(\Delta\delta^{13}$C$^\alpha_i - \Delta\delta^{13}C^\beta_i)$ pass through the origin from two directions, the helix-to-coil and strand-to-coil directions. LACS is available from a webserver at: http://bija.nmrfam.wisc.edu/MANI-LACS/ The BMRB uses LACS in screening chemical shift data sets being deposited and notifies depositors of possible problems with chemical shift referencing and the presence of outliers. The approach also has been used to derive unbiased 13C$^\alpha$ and 13C$^\beta$ chemical shift values for residues in random coil [2] and to determine nearest-neighbor effects on chemical shifts of residues in coil, helix, or strand [3].

Publications:

Acquiring the Technology

Available from: http://www.bija.nmrfam.wisc.edu/MANI-LACS/

Other Acknowledgements

Center for Eukaryotic Structural Genomics (CESG), University of Wisconsin-Madison Biochemistry Department, 433 Babcock Drive, Madison, WI 53706-1549; phone: 608.263.2183; fax: 608.890.1942; email: cesginfo@biochem.wisc.edu; website: http://www.uwstructuralgenomics.org. This research funded by NIH / NIGMS Protein Structure Initiative grants U54 GM074901 and P50 GM064598.