Summary

Fusion protein vectors developed for high-throughput protein expression as part of the Protein Structure Initiative have been investigated for use in the expression and stabilization of human cyt b5, a monotopic membrane protein that must be attached to the cellular membrane for function. Expression as a fusion to His8-maltose binding protein allowed expression of the full-length cyt b5 (fl-cytb5) as a fully soluble entity. Maintenance of the solubility in *E. coli* during the time course of expression was associated with high-level incorporation of protoporphyrin IX into the heme domain of the fusion protein. The fl-cytb5 could be liberated from the fusion by site-specific proteolysis, which permitted spontaneous incorporation into membrane vesicles. This work provides a convenient method for the production and high-yield in situ delivery of monotopic membrane proteins to lipid environments.

Publication:

Acquiring the Technology

Contact Patrick Sweeney, Wisconsin Alumni Research Foundation
prsweeney@wisc.edu.

Other Acknowledgements

Also funded by NIH GM50853, B.G. Fox, PI.

Center for Eukaryotic Structural Genomics (CESG), University of Wisconsin-Madison Biochemistry Department, 433 Babcock Drive, Madison, WI 53706-1549; phone: 608.263.2183; fax: 608.890.1942; email: cesginfo@biochem.wisc.edu; website: http://www.uwstructuralgenomics.org. This research funded by NIH / NIGMS Protein Structure Initiative grants U54 GM074901 and P50 GM064598.